

The WVM Series provides protection against premature equipment (motor) failure caused by voltage faults on the 3 -phase line. The WVM's microcontroller design provides reliable protection even if regenerated voltages are present. It combines dependable fault sensing with a 10 fault memory and a 6 LED status display. Part instrument, part control, the WVM protects your equipment when you're not there and displays what happened when you return. The WVM is fully adjustable and includes time delays to prevent nuisance tripping and improve system operation. Time delays include a 0.25 to 30 s adjustable trip delay, an adjustable 0.25 to 64 m (in 3 ranges) restart delay, plus a unique 3 to 15s true random start delay. The random start delay prevents voltage sags caused by simultaneous restarting of numerous motor loads after a power outage.

For more information see:
Appendix B, page 166, Figure 15 for dimensional drawing.
Appendix C, page, 168, Figure 10 for connection diagram.

Operation

The output relay is energized when all conditions are acceptable and the WVM is reset. A restart and/or random start delay may occur before the output relay is energized.
Field Adjustment: Select the line voltage listed on the motor's name plate. This automatically sets the over and undervoltage trip points. No further adjustment should be required to achieve maximum equipment protection.
Read Memory: Fault(s) stored in the memory are indicated when the yellow LED is flashing, up to 10 faults are noted.
Memory Reset: To clear the memory of all faults stored, rotate selector to Clear Memory for 5 seconds. The yellow LED will turn off.
Memory Overload: Only the 10 most recent faults are retained.
 random start delay does not occur when the reset is manual.
Automatic Restart: Upon fault correction, the output will re-energize after a random start delay.

 applied to the WVM.
Manual Reset: After a fault condition is corrected, the WVM can be manually reset. There are two methods; a customer supplied remote switch, or the onboard selector switch.
 energize.
 and the reset terminals are not isolated from line voltage. A resistance of $\leq 20 \mathrm{~K} \Omega$ across terminals $1 \& 2$ will cause immediate automatic restart.
Automatic Restart Upon Fault Correction: (P / N includes an R)
 random start delay. If a fault occurs during restart timing, the restart time delay will be reset to zero, and the output will not energize until the restart delay is completed.

Order Table:

WVM	X		
	3-Phase Line Voltage	Unbalance	Trip Delay
	-6-200-240VAC	-1-2-10\%	-1-0.25-30s
	$\begin{aligned} & -8 \text { - 355-425VAC } \\ & -9-400-480 \mathrm{VAC} \end{aligned}$		
	-0-500-600VAC		

X	X
Reset Method	Restart Delay
-A - Switch Selectable:	-L - 0.25-64s
Automatic restart upon	-N-6-300s
fault trip	- $\mathrm{H}-0.25-64 \mathrm{~m}$

-R - Swith Selectable: Automatic restart upon fault correction

Features:

- Protects against phase loss \& reversal; over, under \& unbalanced voltages; \& short cycling
- 10 fault memory \& status displayed on 6 LED readout
- Switch selectable automatic restart, delayed automatic restart, \& manual reset
- Isolated, 10A, SPDT output contacts
- ASME A17.1 Rule 210.6
- NEMA MG1 14:30, 14:35
- IEEE C62.41-1991 Level B

Approvals: (E (V) ©

Auxiliary Products:

- 3-phase fuse block/disconnect:

 P/N: FH3P- 2 Amp fuse: P/N: P0600-11
- DIN rail: P/N: C103PM (AI)

Available Models:

WVM011AL WVM911AL WVM611AH WVM911AL-60 WVM611AL WVM911RL WVM811AH WVM911RN-60 WVM911AH
If desired part number is not listed, please call us to see if it is technically possible to build.

Fault Memory	
Type.	Nonvolatile RAM
Capacity	Stores last 10 faults
Status Indicators. 6 LEDs provide existing status \& memory readout Note: 50% of operating line voltage must be applied to L1 \& L2 for operation of status indicators	
Output	
Tуре.	Electromechanical relay
Form.	Isolated, SPDT
Rating	10A resistive @ 250VAC; 6A inductive (0.4 PF) @ 250VAC
Life.	Mechanical - 1×10^{7}
Protection	
Surge	IEEE 62.41-1991 Level B
Isolation Voltage . ≥ 2500 V RMS input to output	
Mechanical	
Mounting Surface with 2 or 4 \#8 (M4 x 0.7) screws	
Dimensions . $6.9 \times 4.4 \times 2.4 \mathrm{in} .(175.3 \times 111.8 \times 61.0 \mathrm{~mm})$	
Termination	Screw terminals with captive wire clamps for up to \#12 AWG ($3.2 \mathrm{~mm}^{2}$) wire
Environmental	
Operating / Storage Temperature	- 40° to $65^{\circ} \mathrm{C} /-40^{\circ}$ to $85^{\circ} \mathrm{C}$
Weight........................	$\cong 25 \mathrm{oz}(709 \mathrm{~g})$

[^0]
Appendix B - Dimensional Drawings

FIGURE 13

AF

FIGURE 14

FIGURE 15

FIGURE 17

FB9L; HLMU; SCR9L

FIGURE 20

$\begin{array}{ll}\text { ECS; ECSW } & \text { (ECS has spade connectors and } \\ & \text { ECSW has terminal board) }\end{array}$
$\begin{array}{ll}\text { ECS; ECSW } & \text { (ECS has spade connectors an } \\ & \text { ECSW has terminal board) }\end{array}$

FIGURE 21

TCS; TCSA

FIGURE 19

LLC4; LLC6; PLS

FIGURE 22

FIGURE 23

LCS

Appendix C - Connection Diagrams

FIGURE 1 - FSU1000 Series

S1 = Optional low current switch V = Voltage L= Load

FIGURE 2 - FS100 Series

FIGURE 3 - FS100 Series

FIGURE 4 - FS200 Series

FIGURE 8 - FS500 Series

FIGURE 11 - DLMU Series

FIGURE 12 - HLMU Series

L1, L2, L3 = Line Voltage Input NO = Normally Open Contact NC = Normally Closed Contact C = Common, Transfer Contact CAUTION: 2 amp max. fast acting fuses are recommended to protect the equipment's wiring. They are not required to protect the HLMU.

FIGURE 6 - FS400 Series

FIGURE 10 - WVM Series

FIGURE 13 -

FIGURE 14 -
TVM/TVW Series

[^1]L2 $=$ Phase B
L3 = Phase C
NO = Normally Open
NC = Normally Closed
C = Common, Transfer Contact
Relay contacts are isolated.
$\mathrm{F}=2 \mathrm{~A}$ Fast acting fuses are recommended, but not required

[^0]: * Unbalance reset is 90% of the unbalance setting (i.e. VUB at 5\% reset is 4.5%)

[^1]: L1 = Phase A

